

Journal of Alloys and Compounds 271-273 (1998) 850-853

Journal of ALLOYS AND COMPOUNDS

Spectroscopy and dynamics of 5f states of Es³⁺ in LaF₃

James V. Beitz*, Clayton W. Williams, G.K. Liu

Chemistry Division, Argonne National Laboratory, Argonne, IL 60439, USA

Abstract

Using time- and wavelength-resolved laser-induced fluorescence methods, the 5f state spectroscopy and photodynamics of $^{253}\text{Es}^{3+}$ in LaF₃ have been investigated. Based on an effective operator Hamiltonian model and approximating the metal ion site symmetry as $C_{2\nu}$, a set of crystal field parameters has been obtained that fit the 56 assigned levels associated with the seven states of Es³⁺ that were observed. The $^{5}\text{F}_{5}$ emitting state of Es³⁺ exhibited a decay rate that approached the expected purely radiative decay of the state. This suggests that the shorter lifetime previously found for this state of Es³⁺ in LaCl₃ arose from radiation damage induced by α decay of ^{253}Es . © 1998 Elsevier Science S.A.

Keywords: Einsteinium; Spectroscopy; Photophysics; Crystal field theory

1. Introduction

Past investigations [1] of the 5f state energy level structure of Es³⁺ focused on LaCl₃ as the host because of the prior extensive experimental spectroscopy and modeling efforts for trivalent lanthanide ions (Ln^{3+}) ions in LaCl₃ [2]. This past work both enabled rapid identification of transitions due to rare earth impurities in LaCl₃ and provided a starting point for theoretical modeling. Similarly detailed work for Ln³⁺ ions in LaF₃ was published recently [3]. Our current investigation marks the beginning of 5f state spectroscopy and photophysics studies on trivalent actinides in LaF₃.

The synthesis, nuclear properties, and purification of Es have been reviewed by Hulet [4]. Radiation damage rapidly accumulates in hosts that contain ²⁵³Es because it is a short-lived ($t_{1/2}$ =20.47 days) α emitter. In consequence, color center formation and other radiation damagerelated factors may account for an observed luminescence lifetime of ²⁵³Es³⁺ in LaCl₃ [5] that is more than a factor of 5 shorter than the calculated purely radiative rate of the corresponding emitting state of aquated Es³⁺ [6]. It is improbable that nonradiative decay to lattice phonons accounts for this difference, given the energy gap law established for 4f state transitions of Ln³⁺ in LaCl₃ [7]. In comparison with LaCl₃, LaF₃ would be expected to less readily form color centers because of the higher electron affinity of fluorine versus chlorine atoms.

2. Experimental details

An ion-exchange column separation was used to remove decay daughter ²⁴⁹Bk from ²⁵³Es [4]. The sample was prepared by coprecipitation of Es^{3+} in LaF_3 (nominally 0.014 wt.% Es in LaF_3). The precipitate was dried under a stream of nitrogen gas, heated in anhydrous HF in a nickel tube, and then twice thermally fluorinated using fluorine gas to ensure trivalent Es. The resulting powder sample was loaded into a fused-silica capillary tube in a dry atmosphere gloved box. The sample tube then was evacuated, back filled with He gas, and flame sealed.

The sample cell was placed into the heat exchange gas space of a temperature-controlled, liquid helium-cooled cryostat. A dye laser pumped by a Q-switched Nd:YAG laser was the excitation source for time- and wavelength-resolved laser-induced fluorescence studies. A computer-interfaced, cooled, gated optical multichannel analyzer and a 1-m monochromator recorded shorter wavelength time-resolved emission spectra. The gated analyzer provided discrimination against short-lived luminescence at the recorded wavelengths by more than a factor of 10^6 . Emission spectra at wavelengths longer than 900 nm were acquired using a cooled photomultiplier attached to the dual exit slit assembly of the monochromator. The dual exit slit enabled rapidly switching between these two

^{*}Corresponding author. Fax: +1 630 2527393; e-mail: beitz@anlchm.chm.anl.gov1

^{0925-8388/98/\$19.00 © 1998} Elsevier Science S.A. All rights reserved. PII: S0925-8388(98)00232-1

Fig. 1. Observed emission and excitation spectra of f–f transitions of Es^{3+} in LaF_3 recorded at 15 K using time- and wavelength-resolved laser-induced fluorescence techniques.

detection capabilities. Photomultiplier data were acquired using a computer-interfaced boxcar detector (for emission spectra) or a signal averaging transient recorder (for decay dynamics studies).

3. Results

Intense, short-lived luminescence (attributed to radiation-induced defects such as color centers) interfered with observation of emission from 5f states of Es^{3+} above 20 000 cm⁻¹. Some of the observed excitation and emission spectra recorded at 15 K are shown in Fig. 1. Emission spectra were recorded using 526 nm excitation. Excitation spectra for the ⁵F₄ and higher lying states were recorded by monitoring emission from the ⁵F₄ state. For other excitation spectra, ⁵F₅ state emission was monitored.

Classification of observed lines as to purely electronic or vibronic character was based on the temperature dependence of the observed spectra. The components of the ${}^{5}I_{8}$ ground state were assigned based on emission to it from

the ${}^{5}F_{4}$ state and confirmed, for the lowest lying components, by emission from the ${}^{5}F_{5}$ state. The origin of the ${}^{5}F_{4}$ state was confirmed by observing it in both excitation and emission. As noted by Carnall [3], the metal ion site symmetry in LaF₃ is C₂ and, in consequence, few optical selection rules exist. Use of a powdered sample in our work prevented polarization analysis. For these reasons, state assignment was carried out starting from the premise that the free ion states deduced from work on Es³⁺ in LaCl₃ [1] are approximately those of Es³⁺ in LaF₃.

Nonlinear least-squares modeling of the observed spectra as to the underlying energy level structure of 5f electron states was carried out by approximating the site symmetry as $C_{2\nu}$ and using an effective operator Hamiltonian formalism with simultaneous adjustment of free-ion parameters, as has been described previously [1]. The starting point for modeling was the set of crystal field parameters established for the 4f counterpart of Es^{3+} . namely Ho^{3+} , in LaF₃ [3] and the known trends for crystal field parameters of 3+ actinide ions in LaCl₃. Assignments of levels within a crystal field multiplet were guided by past work on Es³⁺ in LaCl₃ [1] and the results of preliminary model calculations. Table 1 lists the resulting best fit model parameters; Table 2 compares the resulting calculated state energies to the assigned observed bands. As is evident, the model calculation provides a good fit to the assigned levels. However, for the reasons noted above, the assignments within a multiplet and the value of the deduced crystal field parameters must be considered to be subject to future revision when crystal field parameter trends for trivalent actinides in LaF₃ become established.

The fluorescence decay of the ${}^{5}F_{5}$ and ${}^{5}F_{4}$ states of Es³⁺ in LaF₃ at 15 K were recorded and found to consist of a complex but rapid initial decay followed by a single exponential decay at longer times. The rapid initial decay of the Es³⁺ emission is attributed to the influence of radiation damage-induced color centers that quench the Es³⁺ excitation energy. The exponential decay at longer times reflects the dynamics of Es³⁺ ions that are isolated from the influence of color centers. The observed lifetimes are compared, in Table 3, with values for Es³⁺ in LaCl₃ [5,8] and the calculated purely radiative lifetime of the ${}^{5}F_{5}$

Table 1 Energy level model parameters for Es^{3^+} in LaF_3 (in cm⁻¹)^a

Par.	Value	Par.	Value	Par.	Value	Par.	Value
$\overline{F^2}$ F^4 F^6	64 570(53) 50 351(140) 28 047(80)	γT^2	472(32) [110]	T^8 $M^{0 b}$ $p^{2 c}$	[408] [1.458]	$B_2^2 \\ B_2^4 \\ B_4^4$	[-100] 423(53) 828(47)
F ξ α ρ	38 047(89) 3955(2) [30.21] -751(20)	T^{4} T^{6} T^{7}	[45] [50] [-256] [684]	$\begin{array}{c} P\\ B_2^0\\ B_0^4\\ P^6\end{array}$	[506] -505(37) 1167(86) 251(70)	$B_4 \\ B_2^6 \\ B_4^6 \\ B^6$	-1163(54) -651(52) -1020(42)

"Values in parentheses are errors in indicated parameters. Value in brackets were not allowed to vary in parameter fitting.

 ${}^{b}M^{2}$ and M^{4} were constrained to the ratios $M^{2}=0.55 M^{0}$ and $M^{4}=0.36 M^{0}$.

 ${}^{c}P^{4}$ and P^{6} were constrained to the ratios $P^{4}=0.5 P^{2}$ and $P^{6}=0.1 P^{2}$.

Table 2										
Experimental	and	calculated	5f	state	energy	levels	of	Es ³⁺	in	LaF_3

Largest	Exp.	Calc.	Exp.	Largest	Exp.	Calc.	Exper.
L_J state	(cm^{-1})	(cm^{-1})	$-\text{Calc.}^{-1}$	L_J state	(cm^{-1})	(cm^{-1})	-Calc. (cm ⁻¹)
⁵ L	0	4.3	-4.3	⁵ F.	16 314.0	16 300.8	13.3
8	9.5	6.9	2.6	4	16 321.0	16 321.7	-0.7
	41.0	41.3	-0.3		16 373.0	16 385.0	-12.0
		53.2			16 416.0	16 431.8	-15.8
	125.0	126.8	-1.8			16 447.2	
	220.0	222.3	-2.3		16 580.0	16 574.9	5.1
	282.0	262.3	19.7		16 598.0	16 583.9	14.1
		341.4			16 629.0	16 632.7	-3.7
	380.0	372.4	7.6			16 664.5	
	461.0	479.0	-18.0				
	506.0	521.2	-15.2	⁵ I ₄		17 921.9	
		538.5				17 924.5	
	580.0	603.5	-23.5			17 989.6	
		630.6				18 049.4	
	752.0	729.3	22.7			18 057.6	
	780.0	771.0	9.0			18 131.4	
	783.0	779.9	3.1			18 133.3	
5						18 194.0	
F ₅	9828.0	9827.9	0.1			18 283.9	
		9844.9		5.			
		9863.9		-1 ₅	18 707.0	18 715.5	-8.5
		9863.9			18 /83.0	18 /99.1	-16.1
		9878.4			18 855.0	18 837.6	17.4
		9922.2			18 908.0	18 888.8	19.2
		9972.1			10.072.0	18 943.5	1.0
		9980.1			18 9/2.0	18 9/3.0	-1.0
		9992.0			19 000.0	19 001.1	4.9
		10 073.9			19 066.0	19 093.3	- 5.5
		10 107.5			19 105.0	19 103.3	1.7
⁵ I		11 053 2			19 309 0	19 291.9	-13.5
17		11 070 1			17 507.0	17 522.5	15.5
		11 089 5		${}^{3}K_{2}{}^{5}G_{4}$		19 938 1	
		11 127.7		118, 06		19 956.7	
		11 134.7				19 987.4	
		11 172.7				20 008.8	
		11 190.8				20 016.2	
		11 191.9				20 049.0	
		11 195.6				20 067.8	
		11 229.6				20 076.2	
		11 261.9				20 081.3	
		11 282.2				20 085.8	
		11 300.0				20 096.5	
		11 308.2				20 105.7	
		11 351.2				20 110.3	
3_						20 148.0	
^J D ₂	12 228.0	12 249.0	-21.0		20 162.0	20 159.7	2.3
		12 261.2			20 193.0	20 212.2	-19.2
	12 290.0	12 289.1	0.9		20 228.0	20 218.9	9.1
	12 299.0	12 291.1	7.9		20 238.0	20 234.9	3.1
	12 340.0	12 325.6	14.4		20 256.0	20 248.2	7.8
5 v	12 222 0	12 215 0	17.0		20 300.0	20 298.2	1.8
-1 ₆	13 233.0	13 215.8	17.2		20 320.0	20 326.2	-6.2
	13 244.0	13 218.3	25.7		20.265.0	20 353.3	0.1
	13 238.0	13 202.3	-4.5		20 303.0	20 304.9	0.1
	13 295.0	13 298.3	-3.5		20 380.0	20 378.3	1./
	13 312.0	13 328.3	-10.3			20 405.2	
	13 320.0	13 332.3	-0.5			20 404.1	
	13 330.0	13 331.8	-1.8			20 301.9	
	13 336.0	13 3/1.4	-13.4			20 500.0	
	13 390.0	13 371.4	29			20 510.9	
	13 393.0	13 372.1	2.9			20 321.0	
	13 520.0	13 594 7	-47				
	13 535 0	13 533 4	1.6				
	10 000.0	10 000.7	1.0				

^aEstimated uncertainty: $\pm 2 \text{ cm}^{-1}$. ^bEnergies are shown for all calculated levels up to and including ${}^{3}K_{8}, {}^{5}G_{6}$. ^cConsidering all 56 assigned lines, the deviation [1] between the experimental and calculated values is 13.1 cm⁻¹.

Table 3				
Comparison	of 5f	state	dynamics	of Es ³⁺

Es ³⁺	Energy $(am^{-1})^a$	Observed lifetime (Aquated Es ³⁺	
state	gap (cm)	Es ³⁺ in LaCl ₃ ^b	Es ³⁺ in LaF ^c ₃	radiative lifetime ^d (µs)
⁵ F ₅ ⁵ F ₄	9425 2970	418 23	2060 ± 100 39 ± 6	2400 Not reported

^aBased on the free-ion state energies of Es^{3+} in LaCl_{3} [1].

^bAt 4 K [5,8].

^cPresent work at 15 K, The long time portion of an observed decay was fit to a single exponential decay model. ^dSee Ref. [6].

See Rei. [0].

state of aquated Es³⁺ [6]. It is evident in Table 3 that the observed lifetimes in LaF₃ are longer than those reported for LaCl₃ which is counter to the trend expected if nonradiative decay to lattice phonons (energy gap law behavior [7]) dominated the dynamics. This provides evidence that nonradiative decay to color centers or other radiation damage-induced factors dominated the 5f state dynamics of Es³⁺ in LaCl₃. As might be expected from energy gap law trends for trivalent lanthanide ions in LaF₃ [3], the observed lifetime of the ${}^{5}F_{5}$ state of Es³⁺ in LaF₃ is comparable to the calculated purely radiative lifetime of the state. Evidence that this state can undergo rapid nonradiative decay in the absence of significant radiation damage is found in the reported short observed fluorescence lifetimes of the ${}^{5}F_{5}$ state of Es $^{3+}$ as an aquated ion $(1.05 \ \mu s \text{ in H}_2\text{O})$ and complexed in a organic phase (2.34) μ s) [9]. In these solution phase studies, the coordinated ligands contained high-frequency fundamental vibrational modes that are absent in LaF₃.

Acknowledgements

The Transplutonium Element Program at Oak Ridge National Laboratory supplied the ²⁵³Es used in this work. J.V.B. thanks L.R. Morss for providing a temperature-

controlled ion-exchange column system and instruction in its use. This work was performed under the auspices of the Office of Basic Energy Sciences, Division of Chemical Sciences of the US Department of Energy under contract W-31-109-ENG-38.

References

- [1] W.T. Carnall, J. Chem. Phys. 96 (1992) 8713.
- [2] G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, Interscience, New York, 1968.
- [3] W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana, J. Chem. Phys. 90 (1989) 3443.
- [4] E.K. Hulet, in: J.J. Katz, G.T. Seaborg, L.R. Morss (Eds.), The Chemistry of the Actinide Elements, 2nd ed., vol. 2, Chapman and Hall, London, 1986, pp. 1071–1084.
- [5] J.P. Hessler, private communication.
- [6] W.T. Carnall, H.M. Crosswhite, in: J.J. Katz, G.T. Seaborg, L.R. Morss (Eds.), The Chemistry of the Actinide Elements, 2nd ed., vol. 2, Chapman and Hall, London, 1986, pp. 1235–1277.
- [7] H.W. Moos, J. Lumin. 1 (1970) 106.
- [8] J.P. Hessler, J.A. Caird, W.T. Carnall, H.M. Crosswhite, R.K. Sjoblom, F. Wagner Jr., in: G.J. McCarthy, J.J. Rhyne (Eds.), The Rare Earths in Modern Science and Technology, Plenum, New York, 1978, pp. 507–512.
- [9] J.V. Beitz, D.W. Wester, C.W. Williams, J. Less-Common Metals 93 (1983) 331.